Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## Ethyl 4-(4-cyanophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5carboxylate

#### De-Hong Wu,\* You-Hong Zhang and Zhu-Feng Li

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: wudehong@seu.edu.cn

Received 24 June 2009; accepted 26 June 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.050; wR factor = 0.151; data-to-parameter ratio = 15.4.

The asymmetric unit of the title compound,  $C_{15}H_{15}N_3O_2S$ , contains two independent molecules corresponding to the Rand S enantiomers. The dihydropyrimidinone rings adopt a flattened boat conformation. One of the ethyl groups is disordered over two orientations with occupancy factors of 0.700 (7) and 0.300 (7). In the crystal structure, molecules are linked by intermolecular N-H···O hydrogen-bonding interactions into one-dimensional chains along the *c*-axis direction. The chains are further connected by  $N-H \cdot \cdot \cdot S$  hydrogen bonds, forming a three-dimensional network.

#### **Related literature**

For the synthesis and the pharmaceutical applications of pyrimidinones, see: Atwal (1990); Steele et al. (1998); Manjula et al. (2004); Matsuda & Hirao (1965).

### **Experimental**

#### Crystal data

| C15H15N3O2S                       |  |
|-----------------------------------|--|
| $M_r = 301.37$                    |  |
| Triclinic, $P\overline{1}$        |  |
| a = 9.2938 (19) Å                 |  |
| <i>b</i> = 13.277 (3) Å           |  |
| c = 14.512 (3)  Å                 |  |
| $\alpha = 101.247 \ (17)^{\circ}$ |  |
| $\beta = 108.442 \ (13)^{\circ}$  |  |

#### Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)  $T_{\min} = 0.898, T_{\max} = 0.904$ 

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.050 \\ wR(F^2) &= 0.151 \end{split}$$
S = 1.065958 reflections 386 parameters

V = 1529.6 (7) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 0.22 \text{ mm}^{-1}$ T = 291 K $0.50 \times 0.48 \times 0.47~\mathrm{mm}$ 

 $\gamma = 107.89 \ (3)^{\circ}$ 

13899 measured reflections 5958 independent reflections 4590 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.029$ 

2 restraints H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$ 

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                     | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdots A$ |
|------------------------------------------------------|--------------|-------------------------|------------------------|---------------------------|
| $N1 - H1A \cdots S2^{i}$                             | 0.86         | 2.60                    | 3.4612 (19)            | 174                       |
| $N2 - H2A \cdots O3^{m}$<br>$N5 - H5A \cdots O1^{m}$ | 0.86<br>0.86 | 2.14<br>2.01            | 2.843 (2)<br>2.852 (2) | 138<br>165                |
|                                                      |              |                         | (-)                    |                           |

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Jiangsu Planned Projects for Postdoctoral Research Funds (grant No. 0802003B) and Professor Dr Rengen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2341).

#### References

Atwal, K. S. (1990). J. Med. Chem. 33, 1510-1515.

- Manjula, A., Rao, B. V. & Neelakantan, P. (2004). Synth. Commun. 34, 2665-2671
- Matsuda, T. & Hirao, I. (1965). Nippon Kagaku Zasshi, 86, 1195-1197.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steele, T. G., Coburn, C. A., Patane, M. A. & Bock, M. G. (1998). Tetrahedron Lett. 39, 9315-9318.



Acta Cryst. (2009). E65, o1733 [doi:10.1107/S1600536809024520]

#### Ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

### D.-H. Wu, Y.-H. Zhang and Z.-F. Li

#### Comment

The common synthetic routes to the synthesis of dihydropyrimidinone derivatives generally involve multi-step transformations that are essentially based on the Biginelli condensation methodology (Steele *et al.*, 1998). 3,4-Dihydropyrimidinones are compounds which have drawn wide-spread attention due to their pharmaceutical applications. A variety of dihydropyrimidinone derivatives have been screened for antihypertension (Atwal, 1990), antibacterial (Matsuda & Hirao, 1965) and calcium channel blocking (Manjula *et al.*, 2004) activities.We report herein the crystal structure of the title compound, ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylate (Fig. 1).

The asymmetric unit of the title compound contains two independent molecules corresponding to the *R*- and *S*-enantiomers. One ethyl group (C6–C7) is disordered over two orientations with refined occupancy factors of 0.700 (7) and 0.300 (7). The dihydropyrimidinone rings adopt a flattened boat conformation. In the crystal structure, the molecules are linked by intermolecular N—H···O hydrogen bonding interactions (Table 1) into one-dimensional chains along the *c* direction (Fig. 2). The chains are further connected by N—H···S hydrogen bonds forming a three-dimensional network.

#### **Experimental**

The title compound was synthesized by refluxing 4-cyanobenzaldehyde (2 mmol), ethyl acetoacetate (2 mmol), thiourea (3 mmol) and  $NH_4Cl$  (1 mmol) in acetic acid (10 ml) at 100 °C for 8 h. The reaction mixture was then allowed to stand at room temperature and the product formed was filtered, washed with ethanol followed by water and dried. Further purification was done by recrystallization from ethanol. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution for 4 weeks.

#### Refinement

H atoms were placed in calculated positions (N—H = 0.86 Å; C—H = 0.93–0.98 Å for  $Csp^2$  and  $Csp^3$  atoms, respectively), assigned fixed  $U_{iso}$  values [ $U_{iso} = 1.2Ueq(Csp^2/N)$  and  $1.5Ueq(Csp^3)$ ] and allowed to ride. The ethyl group labeled by C(6) and C(7) is disordered over two positions with occupancies of 0.700 (7) and 0.300 (7), and all disordered atoms were subjected to a rigid bond restraint.

#### **Figures**



Fig. 1. The content of asymmetric unit of the title compound showing the atom numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity.

Fig. 2. The crystal packing of the title compound, showing the chains along [001] formed by N—H…O hydrogen bonds (dashed lines). The minor component of disorder and H atoms not involved in hydrogen bonds are omitted for clarity.

#### Ethyl 4-(4-cyanophenyl)-6-methyl-2-thioxo-1,2,3,4- tetrahydropyrimidine-5-carboxylate

| Crystal data                                         |                                                       |
|------------------------------------------------------|-------------------------------------------------------|
| $C_{15}H_{15}N_3O_2S$                                | Z = 4                                                 |
| $M_r = 301.37$                                       | $F_{000} = 632$                                       |
| Triclinic, <i>P</i> T                                | $D_{\rm x} = 1.309 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Hall symbol: -P 1                                    | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| <i>a</i> = 9.2938 (19) Å                             | Cell parameters from 4203 reflections                 |
| b = 13.277 (3)  Å                                    | $\theta = 2.4 - 27.5^{\circ}$                         |
| c = 14.512 (3) Å                                     | $\mu = 0.22 \text{ mm}^{-1}$                          |
| $\alpha = 101.247 \ (17)^{\circ}$                    | T = 291  K                                            |
| $\beta = 108.442 \ (13)^{\circ}$                     | Block, yellow                                         |
| $\gamma = 107.89 \ (3)^{\circ}$                      | $0.50 \times 0.48 \times 0.47 \ mm$                   |
| $V = 1529.6 (7) \text{ Å}^3$                         |                                                       |
|                                                      |                                                       |
| Data collection                                      |                                                       |
| Rigaku SCXmini<br>diffractometer                     | 5958 independent reflections                          |
| Radiation source: fine-focus sealed tube             | 4590 reflections with $I > 2\sigma(I)$                |
| Monochromator: graphite                              | $R_{\text{int}} = 0.029$                              |
| Detector resolution: 13.6612 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 26.0^{\circ}$                     |

 $\theta_{\min} = 2.4^{\circ}$  $h = -11 \rightarrow 11$ 

 $k = -16 \rightarrow 16$ 

 $l = -17 \rightarrow 17$ 

T = 291 K

Absorption correction: multi-scan

(CrystalClear; Rigaku, 2005)  $T_{min} = 0.898$ ,  $T_{max} = 0.904$ 

13899 measured reflections

ω scans

Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.050$                                | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.151$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0841P)^2 + 0.2227P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.06                                                       | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 5958 reflections                                               | $\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$                                 |
| 386 parameters                                                 | $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$                          |
| 2 restraints                                                   | Extinction correction: none                                                         |
| Primary atom site location: structure-invariant direct methods |                                                                                     |
|                                                                |                                                                                     |

#### Special details

**Experimental**. 1*H*-NMR (d4-Methanol) δ (p.p.m.): 7.73 (d, 2H, J = 8 Hz), 7.50 (d, 2H, J = 8 Hz), 5.40 (s, 1H), 4.11 (q, 2H, J = 7 Hz), 2.37 (s, 3H), 1.19(t, 3H, J = 7 Hz). 13 C-NMR (d4-Methanol) δ(p.p.m.): 13.08 (-CH2—CH3), 16.33 (-CH3), 54.66 (C\*), 60.03 (-CH2—CH3), 100.73 (C—C=O), 111.32 (C—CN), 118.08 (-CN), 127.46, 132.29 (CH in phenyl), 145.42 (C in phenyl), 148.56 (CH3—C—NH–), 165.53 (C=O), 175.35 (C=S).

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x          | У             | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|-----|------------|---------------|---------------|-------------------------------|-----------|
| C1  | 0.2143 (2) | -0.01219 (17) | 0.21806 (15)  | 0.0419 (4)                    |           |
| C2  | 0.2370 (2) | 0.03499 (16)  | 0.06791 (14)  | 0.0398 (4)                    |           |
| C3  | 0.2591 (3) | -0.0104 (2)   | -0.02697 (17) | 0.0561 (6)                    |           |
| H3A | 0.2465     | 0.0359        | -0.0696       | 0.084*                        |           |
| H3B | 0.1776     | -0.0852       | -0.0639       | 0.084*                        |           |
| H3C | 0.3675     | -0.0110       | -0.0084       | 0.084*                        |           |
| C4  | 0.2051 (2) | 0.12633 (16)  | 0.09358 (13)  | 0.0374 (4)                    |           |
| C5  | 0.1790 (3) | 0.19201 (18)  | 0.02444 (15)  | 0.0454 (5)                    |           |
| C6  | 0.1450 (8) | 0.3589 (6)    | 0.0092 (7)    | 0.082 (2)                     | 0.700 (7) |
| H6A | 0.0435     | 0.3271        | -0.0523       | 0.098*                        | 0.700 (7) |
| H6B | 0.2375     | 0.3768        | -0.0108       | 0.098*                        | 0.700 (7) |
| C7  | 0.1533 (8) | 0.4606 (4)    | 0.0772 (5)    | 0.1006 (17)                   | 0.700 (7) |
| H7A | 0.1462     | 0.5134        | 0.0410        | 0.151*                        | 0.700 (7) |

| H7B  | 0.2560      | 0.4930       | 0.1366       | 0.151*      | 0.700 (7) |
|------|-------------|--------------|--------------|-------------|-----------|
| H7C  | 0.0632      | 0.4415       | 0.0983       | 0.151*      | 0.700 (7) |
| C8   | 0 2021 (2)  | 0 16692 (16) | 0 19771 (13) | 0.0368 (4)  |           |
| H8A  | 0.1093      | 0.1899       | 0.1884       | 0.044*      |           |
| C9   | 0.3609 (2)  | 0.26699 (16) | 0.27233 (14) | 0.0387 (4)  |           |
| C10  | 0.5112 (3)  | 0.25592 (17) | 0.30151 (16) | 0.0474 (5)  |           |
| H10A | 0.5152      | 0.1881       | 0.2735       | 0.057*      |           |
| C11  | 0.6553 (3)  | 0.34466 (18) | 0.37184 (17) | 0.0510(5)   |           |
| H11A | 0.7548      | 0.3357       | 0.3922       | 0.061*      |           |
| C12  | 0.6507 (3)  | 0.44634 (17) | 0.41161 (15) | 0.0461 (5)  |           |
| C13  | 0.8014 (3)  | 0.53885 (19) | 0.48441 (17) | 0.0554 (6)  |           |
| C14  | 0.5017 (3)  | 0.45957 (19) | 0.38096 (17) | 0.0554 (6)  |           |
| H14A | 0.4989      | 0.5286       | 0.4064       | 0.067*      |           |
| C15  | 0.3576 (3)  | 0.36968 (18) | 0.31243 (16) | 0.0495 (5)  |           |
| H15A | 0.2578      | 0.3782       | 0.2931       | 0.059*      |           |
| C16  | 0.5233 (3)  | 0.77227 (17) | 0.18205 (15) | 0.0451 (5)  |           |
| C17  | 0.5666 (3)  | 0.77320 (17) | 0.35679 (15) | 0.0436 (5)  |           |
| C18  | 0.4795 (3)  | 0.7769 (2)   | 0.42837 (19) | 0.0603 (6)  |           |
| H18A | 0.5549      | 0.7901       | 0.4967       | 0.091*      |           |
| H18B | 0.3873      | 0.7069       | 0.4060       | 0.091*      |           |
| H18C | 0.4408      | 0.8362       | 0.4280       | 0.091*      |           |
| C19  | 0.7254 (2)  | 0.78795 (16) | 0.38041 (14) | 0.0384 (4)  |           |
| C20  | 0.8419 (3)  | 0.82399 (17) | 0.48790 (15) | 0.0439 (5)  |           |
| C21  | 1.1249 (3)  | 0.9003 (2)   | 0.60221 (18) | 0.0630 (6)  |           |
| H21A | 1.1071      | 0.8446       | 0.6364       | 0.076*      |           |
| H21B | 1.1211      | 0.9669       | 0.6412       | 0.076*      |           |
| C22  | 1.2875 (3)  | 0.9271 (3)   | 0.5945 (3)   | 0.0823 (9)  |           |
| H22A | 1.3741      | 0.9563       | 0.6621       | 0.123*      |           |
| H22B | 1.3032      | 0.9818       | 0.5601       | 0.123*      |           |
| H22C | 1.2900      | 0.8604       | 0.5562       | 0.123*      |           |
| C23  | 0.7893 (2)  | 0.77481 (16) | 0.29625 (14) | 0.0382 (4)  |           |
| H23A | 0.9001      | 0.8337       | 0.3216       | 0.046*      |           |
| C24  | 0.8018 (2)  | 0.66181 (16) | 0.26707 (14) | 0.0381 (4)  |           |
| C25  | 0.9496 (3)  | 0.65221 (18) | 0.31451 (17) | 0.0488 (5)  |           |
| H25A | 1.0406      | 0.7151       | 0.3626       | 0.059*      |           |
| C26  | 0.9640 (3)  | 0.5505 (2)   | 0.29138 (18) | 0.0556 (6)  |           |
| H26A | 1.0641      | 0.5455       | 0.3238       | 0.067*      |           |
| C27  | 0.8294 (3)  | 0.45617 (18) | 0.21999 (16) | 0.0504 (5)  |           |
| C28  | 0.6818 (3)  | 0.4646 (2)   | 0.17110 (18) | 0.0591 (6)  |           |
| H28A | 0.5913      | 0.4017       | 0.1226       | 0.071*      |           |
| C29  | 0.6684 (3)  | 0.56674 (19) | 0.19433 (17) | 0.0538 (5)  |           |
| H29A | 0.5687      | 0.5718       | 0.1608       | 0.065*      |           |
| C30  | 0.8447 (4)  | 0.3498 (2)   | 0.20089 (19) | 0.0659 (7)  |           |
| C6'  | 0.070 (2)   | 0.3356 (16)  | -0.0032 (18) | 0.082 (2)   | 0.300 (7) |
| H6'A | 0.0324      | 0.2960       | -0.0756      | 0.098*      | 0.300 (7) |
| H6'B | -0.0202     | 0.3477       | 0.0105       | 0.098*      | 0.300 (7) |
| C7'  | 0.2159 (17) | 0.4385 (11)  | 0.0334 (12)  | 0.1006 (17) | 0.300 (7) |
| H7'A | 0.1932      | 0.4860       | -0.0063      | 0.151*      | 0.300 (7) |
| H7'B | 0.3057      | 0.4212       | 0.0264       | 0.151*      | 0.300 (7) |

| H7'C | 0.2453       | 0.4762        | 0.1043        | 0.151*     | 0.300 (7) |
|------|--------------|---------------|---------------|------------|-----------|
| N1   | 0.2529 (2)   | -0.02691 (14) | 0.13483 (13)  | 0.0448 (4) |           |
| H1A  | 0.2896       | -0.0779       | 0.1228        | 0.054*     |           |
| N2   | 0.1754 (2)   | 0.07505 (14)  | 0.24092 (12)  | 0.0416 (4) |           |
| H2A  | 0.1310       | 0.0779        | 0.2846        | 0.050*     |           |
| N3   | 0.9225 (3)   | 0.60999 (18)  | 0.54293 (17)  | 0.0738 (6) |           |
| N4   | 0.4650 (2)   | 0.75428 (16)  | 0.25562 (13)  | 0.0516 (4) |           |
| H4A  | 0.3600       | 0.7300        | 0.2385        | 0.062*     |           |
| N5   | 0.6813 (2)   | 0.79053 (14)  | 0.20621 (12)  | 0.0441 (4) |           |
| H5A  | 0.7242       | 0.8135        | 0.1658        | 0.053*     |           |
| N6   | 0.8613 (4)   | 0.2675 (2)    | 0.1898 (2)    | 0.0943 (9) |           |
| 01   | 0.1803 (2)   | 0.17349 (17)  | -0.06000 (12) | 0.0695 (5) |           |
| O2   | 0.1501 (3)   | 0.27880 (16)  | 0.06545 (13)  | 0.0776 (6) |           |
| O3   | 0.8045 (2)   | 0.82617 (18)  | 0.56068 (12)  | 0.0720 (5) |           |
| O4   | 0.99902 (18) | 0.85749 (13)  | 0.49825 (11)  | 0.0513 (4) |           |
| S1   | 0.21451 (8)  | -0.10085 (6)  | 0.28636 (5)   | 0.0632 (2) |           |
| S2   | 0.39778 (8)  | 0.77075 (5)   | 0.06890 (4)   | 0.0592 (2) |           |
|      |              |               |               |            |           |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C1  | 0.0376 (10) | 0.0473 (11) | 0.0412 (10) | 0.0142 (8)  | 0.0170 (9)  | 0.0176 (9)  |
| C2  | 0.0396 (10) | 0.0435 (10) | 0.0339 (9)  | 0.0131 (8)  | 0.0160 (8)  | 0.0111 (8)  |
| C3  | 0.0722 (15) | 0.0587 (13) | 0.0437 (11) | 0.0300 (12) | 0.0304 (11) | 0.0110 (10) |
| C4  | 0.0373 (9)  | 0.0438 (10) | 0.0305 (9)  | 0.0142 (8)  | 0.0148 (8)  | 0.0124 (8)  |
| C5  | 0.0460 (11) | 0.0568 (12) | 0.0369 (10) | 0.0220 (9)  | 0.0173 (9)  | 0.0190 (9)  |
| C6  | 0.119 (6)   | 0.075 (4)   | 0.075 (3)   | 0.057 (5)   | 0.035 (5)   | 0.048 (3)   |
| C7  | 0.114 (4)   | 0.074 (3)   | 0.136 (5)   | 0.051 (3)   | 0.050 (3)   | 0.055 (3)   |
| C8  | 0.0386 (10) | 0.0442 (10) | 0.0329 (9)  | 0.0192 (8)  | 0.0169 (8)  | 0.0148 (8)  |
| C9  | 0.0448 (10) | 0.0440 (10) | 0.0309 (9)  | 0.0189 (9)  | 0.0181 (8)  | 0.0131 (8)  |
| C10 | 0.0467 (11) | 0.0404 (10) | 0.0530 (12) | 0.0197 (9)  | 0.0173 (10) | 0.0116 (9)  |
| C11 | 0.0435 (11) | 0.0491 (12) | 0.0551 (13) | 0.0174 (10) | 0.0147 (10) | 0.0161 (10) |
| C12 | 0.0517 (12) | 0.0451 (11) | 0.0353 (10) | 0.0122 (9)  | 0.0166 (9)  | 0.0130 (8)  |
| C13 | 0.0643 (14) | 0.0469 (12) | 0.0485 (12) | 0.0175 (11) | 0.0198 (12) | 0.0145 (10) |
| C14 | 0.0690 (15) | 0.0440 (12) | 0.0513 (12) | 0.0263 (11) | 0.0225 (11) | 0.0079 (9)  |
| C15 | 0.0513 (12) | 0.0517 (12) | 0.0448 (11) | 0.0264 (10) | 0.0163 (10) | 0.0094 (9)  |
| C16 | 0.0611 (13) | 0.0422 (11) | 0.0392 (10) | 0.0269 (10) | 0.0216 (10) | 0.0157 (8)  |
| C17 | 0.0533 (12) | 0.0497 (11) | 0.0409 (10) | 0.0265 (9)  | 0.0260 (9)  | 0.0204 (9)  |
| C18 | 0.0621 (14) | 0.0887 (18) | 0.0607 (14) | 0.0418 (13) | 0.0427 (12) | 0.0379 (13) |
| C19 | 0.0518 (11) | 0.0390 (10) | 0.0373 (10) | 0.0246 (9)  | 0.0247 (9)  | 0.0166 (8)  |
| C20 | 0.0581 (12) | 0.0448 (11) | 0.0386 (10) | 0.0285 (10) | 0.0237 (10) | 0.0138 (8)  |
| C21 | 0.0676 (15) | 0.0553 (14) | 0.0467 (12) | 0.0228 (12) | 0.0068 (11) | 0.0058 (10) |
| C22 | 0.0594 (16) | 0.0692 (17) | 0.095 (2)   | 0.0237 (13) | 0.0063 (15) | 0.0221 (15) |
| C23 | 0.0468 (10) | 0.0412 (10) | 0.0361 (9)  | 0.0211 (8)  | 0.0222 (8)  | 0.0168 (8)  |
| C24 | 0.0490 (11) | 0.0434 (10) | 0.0343 (9)  | 0.0236 (9)  | 0.0247 (9)  | 0.0161 (8)  |
| C25 | 0.0502 (12) | 0.0504 (12) | 0.0488 (12) | 0.0250 (10) | 0.0195 (10) | 0.0152 (9)  |
| C26 | 0.0582 (13) | 0.0606 (14) | 0.0585 (13) | 0.0369 (12) | 0.0233 (11) | 0.0197 (11) |
| C27 | 0.0710 (14) | 0.0501 (12) | 0.0446 (11) | 0.0367 (11) | 0.0286 (11) | 0.0159 (9)  |

| 0.0675 (15) | 0.0488 (13)                                                                                                                                                                                                                         | 0.0532 (13)                                          | 0.0262 (11)                                          | 0.0187 (12)                                          | 0.0043 (10)                                          |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 0.0532 (12) | 0.0535 (12)                                                                                                                                                                                                                         | 0.0537 (13)                                          | 0.0290 (10)                                          | 0.0160 (11)                                          | 0.0114 (10)                                          |
| 0.0886 (18) | 0.0633 (15)                                                                                                                                                                                                                         | 0.0518 (13)                                          | 0.0462 (14)                                          | 0.0248 (13)                                          | 0.0111 (11)                                          |
| 0.119 (6)   | 0.075 (4)                                                                                                                                                                                                                           | 0.075 (3)                                            | 0.057 (5)                                            | 0.035 (5)                                            | 0.048 (3)                                            |
| 0.114 (4)   | 0.074 (3)                                                                                                                                                                                                                           | 0.136 (5)                                            | 0.051 (3)                                            | 0.050 (3)                                            | 0.055 (3)                                            |
| 0.0559 (10) | 0.0441 (9)                                                                                                                                                                                                                          | 0.0463 (9)                                           | 0.0253 (8)                                           | 0.0274 (8)                                           | 0.0189 (7)                                           |
| 0.0458 (9)  | 0.0482 (9)                                                                                                                                                                                                                          | 0.0372 (8)                                           | 0.0181 (8)                                           | 0.0237 (7)                                           | 0.0162 (7)                                           |
| 0.0695 (14) | 0.0556 (12)                                                                                                                                                                                                                         | 0.0631 (13)                                          | 0.0094 (11)                                          | 0.0093 (12)                                          | 0.0049 (10)                                          |
| 0.0486 (10) | 0.0679 (12)                                                                                                                                                                                                                         | 0.0459 (10)                                          | 0.0265 (9)                                           | 0.0219 (8)                                           | 0.0240 (9)                                           |
| 0.0591 (10) | 0.0524 (10)                                                                                                                                                                                                                         | 0.0398 (9)                                           | 0.0317 (8)                                           | 0.0288 (8)                                           | 0.0238 (8)                                           |
| 0.134 (2)   | 0.0732 (16)                                                                                                                                                                                                                         | 0.0725 (15)                                          | 0.0687 (17)                                          | 0.0222 (16)                                          | 0.0050 (12)                                          |
| 0.0948 (13) | 0.1007 (14)                                                                                                                                                                                                                         | 0.0499 (9)                                           | 0.0593 (11)                                          | 0.0437 (9)                                           | 0.0432 (9)                                           |
| 0.1407 (18) | 0.0738 (12)                                                                                                                                                                                                                         | 0.0546 (10)                                          | 0.0714 (13)                                          | 0.0467 (11)                                          | 0.0369 (9)                                           |
| 0.0800 (12) | 0.1160 (15)                                                                                                                                                                                                                         | 0.0370 (8)                                           | 0.0530 (11)                                          | 0.0314 (8)                                           | 0.0239 (9)                                           |
| 0.0519 (9)  | 0.0556 (9)                                                                                                                                                                                                                          | 0.0404 (8)                                           | 0.0189 (7)                                           | 0.0153 (7)                                           | 0.0122 (6)                                           |
| 0.0743 (4)  | 0.0735 (4)                                                                                                                                                                                                                          | 0.0747 (4)                                           | 0.0400 (3)                                           | 0.0448 (4)                                           | 0.0500 (4)                                           |
| 0.0743 (4)  | 0.0698 (4)                                                                                                                                                                                                                          | 0.0399 (3)                                           | 0.0421 (3)                                           | 0.0167 (3)                                           | 0.0196 (3)                                           |
|             | 0.0675 (15)<br>0.0532 (12)<br>0.0886 (18)<br>0.119 (6)<br>0.114 (4)<br>0.0559 (10)<br>0.0458 (9)<br>0.0695 (14)<br>0.0486 (10)<br>0.0591 (10)<br>0.134 (2)<br>0.0948 (13)<br>0.1407 (18)<br>0.0800 (12)<br>0.0519 (9)<br>0.0743 (4) | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Geometric parameters (Å, °)

| C1—N2    | 1.329 (3) | C18—H18A | 0.9600    |
|----------|-----------|----------|-----------|
| C1—N1    | 1.361 (2) | C18—H18B | 0.9600    |
| C1—S1    | 1.680 (2) | C18—H18C | 0.9600    |
| C2—C4    | 1.346 (3) | C19—C20  | 1.469 (3) |
| C2—N1    | 1.391 (3) | C19—C23  | 1.521 (2) |
| C2—C3    | 1.494 (3) | C20—O3   | 1.210 (2) |
| С3—НЗА   | 0.9600    | C20—O4   | 1.337 (3) |
| С3—Н3В   | 0.9600    | C21—O4   | 1.452 (3) |
| С3—НЗС   | 0.9600    | C21—C22  | 1.489 (4) |
| C4—C5    | 1.464 (3) | C21—H21A | 0.9700    |
| C4—C8    | 1.514 (2) | C21—H21B | 0.9700    |
| C5—O1    | 1.206 (2) | C22—H22A | 0.9600    |
| C5—O2    | 1.333 (3) | С22—Н22В | 0.9600    |
| C6—O2    | 1.464 (8) | С22—Н22С | 0.9600    |
| C6—C7    | 1.473 (9) | C23—N5   | 1.471 (2) |
| С6—Н6А   | 0.9700    | C23—C24  | 1.528 (3) |
| С6—Н6В   | 0.9700    | C23—H23A | 0.9800    |
| С7—Н7А   | 0.9600    | C24—C25  | 1.386 (3) |
| С7—Н7В   | 0.9600    | C24—C29  | 1.391 (3) |
| С7—Н7С   | 0.9600    | C25—C26  | 1.385 (3) |
| C8—N2    | 1.467 (2) | C25—H25A | 0.9300    |
| C8—C9    | 1.529 (3) | C26—C27  | 1.385 (3) |
| C8—H8A   | 0.9800    | C26—H26A | 0.9300    |
| C9—C15   | 1.388 (3) | C27—C28  | 1.381 (3) |
| C9—C10   | 1.389 (3) | C27—C30  | 1.445 (3) |
| C10-C11  | 1.386 (3) | C28—C29  | 1.385 (3) |
| C10—H10A | 0.9300    | C28—H28A | 0.9300    |
| C11—C12  | 1.380 (3) | С29—Н29А | 0.9300    |
| C11—H11A | 0.9300    | C30—N6   | 1.137 (3) |

| C12—C14    | 1.391 (3)   | C6'—C7'       | 1.453 (16)  |
|------------|-------------|---------------|-------------|
| C12—C13    | 1.445 (3)   | C6'—O2        | 1.51 (2)    |
| C13—N3     | 1.144 (3)   | C6'—H6'A      | 0.9700      |
| C14—C15    | 1.386 (3)   | С6'—Н6'В      | 0.9700      |
| C14—H14A   | 0.9300      | C7'—H7'A      | 0.9600      |
| C15—H15A   | 0.9300      | С7'—Н7'В      | 0.9600      |
| C16—N5     | 1.327 (3)   | С7'—Н7'С      | 0.9600      |
| C16—N4     | 1.370 (3)   | N1—H1A        | 0.8600      |
| C16—S2     | 1.679 (2)   | N2—H2A        | 0.8600      |
| C17—C19    | 1.345 (3)   | N4—H4A        | 0.8600      |
| C17—N4     | 1.394 (3)   | N5—H5A        | 0.8600      |
| C17—C18    | 1.508 (3)   |               |             |
| N2—C1—N1   | 116.14 (17) | C20—C19—C23   | 118.95 (17) |
| N2—C1—S1   | 122.57 (15) | O3—C20—O4     | 122.34 (19) |
| N1—C1—S1   | 121.29 (16) | O3—C20—C19    | 125.4 (2)   |
| C4—C2—N1   | 118.89 (17) | O4—C20—C19    | 112.29 (16) |
| C4—C2—C3   | 127.33 (19) | O4—C21—C22    | 107.1 (2)   |
| N1—C2—C3   | 113.77 (18) | O4—C21—H21A   | 110.3       |
| С2—С3—НЗА  | 109.5       | C22—C21—H21A  | 110.3       |
| С2—С3—Н3В  | 109.5       | O4—C21—H21B   | 110.3       |
| НЗА—СЗ—НЗВ | 109.5       | C22—C21—H21B  | 110.3       |
| С2—С3—Н3С  | 109.5       | H21A—C21—H21B | 108.5       |
| НЗА—СЗ—НЗС | 109.5       | C21—C22—H22A  | 109.5       |
| НЗВ—СЗ—НЗС | 109.5       | C21—C22—H22B  | 109.5       |
| C2—C4—C5   | 121.66 (17) | H22A—C22—H22B | 109.5       |
| C2—C4—C8   | 120.44 (17) | C21—C22—H22C  | 109.5       |
| C5—C4—C8   | 117.85 (17) | H22A—C22—H22C | 109.5       |
| O1—C5—O2   | 121.6 (2)   | H22B—C22—H22C | 109.5       |
| O1—C5—C4   | 126.9 (2)   | N5—C23—C19    | 109.13 (15) |
| O2—C5—C4   | 111.51 (17) | N5-C23-C24    | 110.81 (15) |
| O2—C6—C7   | 108.0 (6)   | C19—C23—C24   | 112.27 (15) |
| O2—C6—H6A  | 110.1       | N5—C23—H23A   | 108.2       |
| С7—С6—Н6А  | 110.1       | С19—С23—Н23А  | 108.2       |
| O2—C6—H6B  | 110.1       | C24—C23—H23A  | 108.2       |
| С7—С6—Н6В  | 110.1       | C25—C24—C29   | 118.28 (19) |
| H6A—C6—H6B | 108.4       | C25—C24—C23   | 119.63 (18) |
| С6—С7—Н7А  | 109.5       | C29—C24—C23   | 122.09 (18) |
| С6—С7—Н7В  | 109.5       | C26—C25—C24   | 121.0 (2)   |
| H7A—C7—H7B | 109.5       | C26—C25—H25A  | 119.5       |
| С6—С7—Н7С  | 109.5       | С24—С25—Н25А  | 119.5       |
| H7A—C7—H7C | 109.5       | C25—C26—C27   | 120.0 (2)   |
| Н7В—С7—Н7С | 109.5       | С25—С26—Н26А  | 120.0       |
| N2—C8—C4   | 109.60 (15) | С27—С26—Н26А  | 120.0       |
| N2         | 109.97 (15) | C28—C27—C26   | 119.6 (2)   |
| C4—C8—C9   | 112.24 (15) | C28—C27—C30   | 121.2 (2)   |
| N2—C8—H8A  | 108.3       | C26—C27—C30   | 119.1 (2)   |
| C4—C8—H8A  | 108.3       | C27—C28—C29   | 120.0 (2)   |
| С9—С8—Н8А  | 108.3       | C27—C28—H28A  | 120.0       |
| C15—C9—C10 | 118.92 (18) | C29—C28—H28A  | 120.0       |

| C15—C9—C8     | 120.95 (17) | C28—C29—C24   | 121.0 (2)   |
|---------------|-------------|---------------|-------------|
| C10—C9—C8     | 120.14 (17) | С28—С29—Н29А  | 119.5       |
| C11—C10—C9    | 120.83 (19) | С24—С29—Н29А  | 119.5       |
| C11-C10-H10A  | 119.6       | N6-C30-C27    | 177.3 (3)   |
| C9—C10—H10A   | 119.6       | C7'—C6'—O2    | 95.9 (11)   |
| C12-C11-C10   | 119.8 (2)   | С7'—С6'—Н6'А  | 112.6       |
| C12—C11—H11A  | 120.1       | O2—C6'—H6'A   | 112.6       |
| C10-C11-H11A  | 120.1       | C7'—C6'—H6'B  | 112.6       |
| C11—C12—C14   | 119.99 (19) | O2—C6'—H6'B   | 112.6       |
| C11—C12—C13   | 119.6 (2)   | H6'A—C6'—H6'B | 110.1       |
| C14—C12—C13   | 120.4 (2)   | С6'—С7'—Н7'А  | 109.5       |
| N3—C13—C12    | 178.1 (3)   | С6'—С7'—Н7'В  | 109.5       |
| C15-C14-C12   | 119.8 (2)   | H7'A—C7'—H7'B | 109.5       |
| C15-C14-H14A  | 120.1       | С6'—С7'—Н7'С  | 109.5       |
| C12-C14-H14A  | 120.1       | H7'A—C7'—H7'C | 109.5       |
| C14—C15—C9    | 120.6 (2)   | H7'B—C7'—H7'C | 109.5       |
| C14-C15-H15A  | 119.7       | C1—N1—C2      | 124.43 (17) |
| С9—С15—Н15А   | 119.7       | C1—N1—H1A     | 117.8       |
| N5—C16—N4     | 116.15 (18) | C2—N1—H1A     | 117.8       |
| N5—C16—S2     | 123.41 (16) | C1—N2—C8      | 125.33 (15) |
| N4—C16—S2     | 120.44 (17) | C1—N2—H2A     | 117.3       |
| C19—C17—N4    | 119.20 (17) | C8—N2—H2A     | 117.3       |
| C19—C17—C18   | 127.79 (19) | C16—N4—C17    | 123.55 (18) |
| N4—C17—C18    | 113.00 (18) | C16—N4—H4A    | 118.2       |
| C17—C18—H18A  | 109.5       | C17—N4—H4A    | 118.2       |
| C17—C18—H18B  | 109.5       | C16—N5—C23    | 125.58 (16) |
| H18A—C18—H18B | 109.5       | C16—N5—H5A    | 117.2       |
| C17—C18—H18C  | 109.5       | C23—N5—H5A    | 117.2       |
| H18A—C18—H18C | 109.5       | C5—O2—C6      | 116.0 (4)   |
| H18B—C18—H18C | 109.5       | C5—O2—C6'     | 119.6 (10)  |
| C17—C19—C20   | 120.67 (17) | C20—O4—C21    | 116.71 (17) |
| C17—C19—C23   | 120.26 (17) |               |             |

### Hydrogen-bond geometry (Å, °)

| D—H···A                                           | <i>D</i> —Н                | $H \cdots A$    | $D \cdots A$ | D—H···A |
|---------------------------------------------------|----------------------------|-----------------|--------------|---------|
| N1—H1A····S2 <sup>i</sup>                         | 0.86                       | 2.60            | 3.4612 (19)  | 174     |
| N2—H2A····O3 <sup>ii</sup>                        | 0.86                       | 2.14            | 2.843 (2)    | 138     |
| N5—H5A…O1 <sup>iii</sup>                          | 0.86                       | 2.01            | 2.852 (2)    | 165     |
| Symmetry codes: (i) $x, y-1, z$ ; (ii) $-x+1, -y$ | +1, -z+1; (iii) $-x+1, -y$ | +1, <i>-z</i> . |              |         |





